Showing posts with label components. Show all posts
Showing posts with label components. Show all posts

Sunday, August 11, 2013

Wiring Diagram Electrical Components Symbols House Home

Home Electrical Wiring on Electrical Wiring In The Home  Wiring 2 Switches To 4 Lights
Electrical Wiring In The Home Wiring 2 Switches To 4 Lights.


Home Electrical Wiring on Home Electrical Blueprint
Home Electrical Blueprint.


Home Electrical Wiring on Electrical Floorplans With Power  Low Voltage And Structured Wiring
Electrical Floorplans With Power Low Voltage And Structured Wiring.


Home Electrical Wiring on Home Electrical Wiring   New Home  Remodels  Additions   As You Wish
Home Electrical Wiring New Home Remodels Additions As You Wish.


Home Electrical Wiring on Electrical Wiring In The Home  Wires Are Not Hot In Electrical Outlet
Electrical Wiring In The Home Wires Are Not Hot In Electrical Outlet.


Home Electrical Wiring on Home Electrical Wiring Trainers  Kelvin Com
Home Electrical Wiring Trainers Kelvin Com.


Home Electrical Wiring on Twelve Common Wiring Problems By Rex Cauldwell
Twelve Common Wiring Problems By Rex Cauldwell.


Home Electrical Wiring on Electrical Wiring In The Home  Wiring Nightmare  Switch  Phila
Electrical Wiring In The Home Wiring Nightmare Switch Phila.


Home Electrical Wiring on All About Wiring Diagrams
All About Wiring Diagrams.


Home Electrical Wiring on Wiring Diagram And Electrical Components Symbols For House Or Home
Wiring Diagram And Electrical Components Symbols For House Or Home.


Read the rest entry[...]

Thursday, July 11, 2013

Battery Discharger Using Discrete Components

The battery discharger published in this website may be improved by adding a Schottky diode (D3). This ensures that a NiCd cell is discharged not to 0.6–0.7 V, but to just under 1 V as recommended by the manufacturers. An additional effect is then that light-emitting diode D2 flashes when the battery connected to the terminals is flat. The circuit in the diagram is based on an astable multivibrator operating at a frequency of about 25 kHz. When transistor T2 conducts, a current flows through inductor L1, whereupon energy is stored in the resulting electromagnetic field. When T2 is cut off, the field collapses, whereupon a counter-emf is produced at a level that exceeds the forward voltage (about 1.6 V) of D2.

Battery Discharger Circuit Diagram0

A current then flows through the diode so that this lights. Diode D1 prevents the current flowing through R4 and C2. This process is halted only when the battery voltage no longer provides a sufficient base potential for the transistors. In the original circuit, this happened at about 0.65 V. The addition of the forward bias of D3 (about 0.3 V), the final discharge voltage of the battery is raised to 0.9–1.0 V. Additional resistors R5 and R6 ensure that sufficient current flows through D3. When the battery is discharged to the recommended level, it must be removed from the discharger since, in contrast to the original circuit, a small current continues to flow through D3, R2-R3, and R5-R6 until the battery is totally discharged.

The flashing of D2 when the battery is nearing recommended discharge is caused by the increasing internal resistance of the battery lowering the terminal voltage to below the threshold level. If no current flows, the internal resistance is of no consequence since the terminal voltage rises to the threshold voltage by taking some energy from the battery. When the discharge is complete to the recommended level, the LED goes out. It should therefore be noted that the battery is discharged sufficiently when the LED begins to flash.
 
 
Streampowers
Read the rest entry[...]